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REVIEW & INTERPRETATION

Cover Crops Could Offset Crop Residue Removal Effects
on Soil Carbon and Other Properties: A Review

Sabrina J. Ruis* and Humberto Blanco-Canqui

ABSTRACT

Crop residue removal for livestock or biofuel production is
common. Excessive residue removal may reduce soil organic
carbon (SOC) and other soil properties. Cover crop (CC)
could be a strategy to ameliorate negative effects of residue
removal, but this has not been widely discussed. We synthe-
sized studies on the impacts of CC addition following crop
residue removal on SOC and related properties, discussed
opportunities and challenges of using CC after residue removal,
and highlighted research needs. We first briefly reviewed the
separate effects of residue removal and CC before reviewing
their combined effects. Our review found that >50% residue
removal reduced SOC stocks by 0.87 Mg ha~! yr~! and <50%
removal by 0.31 Mg ha™! yr~!. However, CC increased SOC by
0.49 Mg ha™! yr™1, suggesting that CC could offset at least part
of the SOC lost with removal. Studies evaluating CC effects
on soil properties after residue removal are few and short term
(<6 yr) but appeared to show limited potential of CC to offset
residue removal effects. However, some studies indicated trends
for increased SOC, suggesting CC may offset removal effects
in the long term. While opportunities exist to integrate residue
removal with CC use, challenges including low CC biomass
and reduction in crop yield in water-limited regions must be
addressed. Further research on interactive effects of CC and residue
removal is needed across different cropping systems and climates.

Core ldeas

¢ Corn residue removal reduces soil organic C stocks and other
soil properties.

¢ Cover crop increases soil organic C stocks and other properties.

¢ Cover crop may not offset soil organic C losses from residue
removal in the short term.

* More data are needed on cover crop effects on soil properties
after residue removal.

EMOVAL OF CROP RESIDUE for animal feed, bedding,
R and biofuel production is an increasingly common

practice in the United States (Liska et al., 2014; Blanco-
Canqui et al., 2016a; Blanco-Canqui et al., 2016b). Crop residue
removal may occur through grazing or mechanical means such as
baling. Approximately 59.3 million ha were planted to corn (Zea
mays L.) and small grains in 2015, (USDA-NASS, 2016). This
resulted in 296 to 593 million Mg of residue or straw available
for harvest assuming residue or straw yields of 5 to 10 Mgha™.
Crop residues, such as corn stover, are considered an inexpensive
source of feedstocks and bedding.

The concern with crop residue removal is that it may negatively
impact soil processes and properties especially when residue is
removed at high rates such as through baling. Excessive crop
residue removal could reduce SOC, increase risks of water and
wind erosion, and reduce soil fertility, biology, and productiv-
ity, among others. Leaving crop residue on the soil surface or
incorporating crop residue after harvest contributes to the
maintenance or accumulation of organic C in the soil. However,
removal of residue may reduce SOC stocks and negatively affect
related soil properties. Soil organic C directly influences soil bio-
logical, chemical, and physical properties, which affect soil pro-
ductivity and environmental quality. For example, an increase
in SOC improves soil aggregate stability (van Groenigen et al.,
2011; Blanco-Cangqui et al., 2013; Laird and Chang, 2013; Tian
etal., 2014; Villamil et al., 2015; Kenney et al., 2015; Johnson et
al., 2016), which reduces the susceptibility of soil to wind erosion
(Blanco-Canqui et al., 2014, 2016b; Tian et al., 2014; Nelson et
al., 2015; Jin et al., 2015; Johnson et al., 2016) and water erosion
(Beniston et al., 2015; Kenney et al., 2015).

A strategy to reduce the residue removal-induced losses of
SOC and degradation of soil properties could be the use of CC
following crop residue removal. Cover crop could provide addi-
tional biomass C input and soil cover when fields would other-
wise be bare, leading to improved soil properties. It is, however,
important to understand the extent to which CC addition
influences SOC stocks and other soil properties after crop resi-
due removal. Similarly, a further understanding of crop residue
removal effects on SOC is needed as such effects can depend on
management duration, soil texture, tillage, climate, cropping
system, and CC species. Some previous reviews have discussed
changes in SOC stocks under residue removal (Blanco-Canqui
and Lal, 2009; Smith et al., 2012; Raffa et al., 2015) and CC
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(Blanco-Canqui et al., 2015), but a review specifically discuss-
ing the interactive effects of crop residue removal and CC on
SOC and related soil attributes is not available. The objectives of
this review were to: (i) synthesize and discuss published studies
on the impacts of CC addition following crop residue removal
on SOC and related soil properties, (ii) discuss the opportuni-
ties and challenges of using CC following residue removal, and
(iii) highlight any research needs for the potential combination
of the above practices.

Prior to discussing crop residue removal and CC interactions,
it is important to briefly review in separate the (i) mechanisms of
C cycling, (ii) effects of crop residue removal on SOC and related
soil physical, chemical, and biological properties, and (iii) effects
of CC alone on the above soil properties. This can allow a better
understanding of the processes and extent to which removal of
crop residues or addition of CC can affect SOC and other prop-
erties and infer how their combination can work under different
management conditions.

MECHANISMS OF SOIL CARBON
CYCLING UNDER RESIDUE
REMOVAL AND COVER CROPS

Stabilization or protection of C in the soil occurs through
three general mechanisms: chemical, biochemical, and physical
(Six et al., 2002). Chemical protection of SOC occurs through
the formation of various types of bonds between fine soil par-
ticles and soil organic matter (organo-mineral associations)

(Six etal,, 2002; Blanco-Canqui and Lal, 2004). Biochemical
protection of SOC occurs through the complexity of the organic
compounds such as lignin, hemicellulose, and others (Sixetal.,
2002). Physical protection of SOC occurs through formation of
stable soil aggregates, which limits organic matter decomposition
and SOC turnover (Six et al,, 2002). The ability of soil aggregates
to protect SOC depends on aggregate stability and size. Stable

..............
"""
et

- -
. -

Soil Organic Carbon

& o ommm s ®

microaggregates (<250 um) can protect SOC more strongly than
macroaggregates (>250 um) (Blanco-Canqui and Lal, 2004).
Presence of stable microaggregates is critical for the physical pro-
tection of SOC (Six et al., 2002; Blanco-Canqui and Lal, 2004).
Removal of residues can reduce soil aggregate stability and result
in increased loss of SOC (Blanco-Canqui and Lal, 2009), while
CC can contribute to aggregate formation and stabilization through
addition of SOC (Blanco-Canqui et al., 2015).

Individual SOC pools, such as organo-mineral associations, may
saturate with SOC (Stewart et al., 2008). The difference between
saturation and current C concentration is termed saturation deficit
(Stewart et al., 2007). Some systems are unable to achieve saturation
due to management but have stabilized the maximum C possible
under that management. Such soils are said to be at an effective sta-
bilization capacity (Stewart et al., 2007). As an example, convention-
ally tilled systems have a lower effective stabilization capacity than
no-till systems (Stewart et al., 2007). Based on this concept, crop
residue removal can initially decrease SOC before achievinga new
effective capacity (Fig. 1). In contrast, CC can initially increase SOC
before reaching a new effective stabilization capacity (Fig. 1).

RESIDUE REMOVAL EFFECTS
ON SOIL PROPERTIES

Reviews on SOC and crop residue removal across differ-
ent soil types, tillage systems, and climates have reported that
residue removal can significantly reduce SOC concentration
and stocks (Blanco-Canqui and Lal, 2009; Smith et al., 2012;
Raffa et al., 2015). The reviews have also reported that there is
significant site-to-site variability. The effect of residue removal
on SOC depends on the amount of residue removed. High rates
(>50%) of residue removal generally reduce SOC concentration,
particularly in the long term (Blanco-Canqui and Lal, 2009).
Soil organic C concentration losses with residue removal can
range from 15 to 50% when crop residue is removed at rates more
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Fig. |. Effective stabilization capacity of soil organic carbon (SOC) under no-till systems with and without cover crop or residue removal

as compared to native prairie (modified from Stewart et al., 2007).
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than 50% (Blanco-Canqui and Lal, 2009; Raffa et al., 2015).
It was estimated that for every 1 Mg ha~! of residue removed,
0.46 gkg™! of SOC was lost (Blanco-Canqui and Lal, 2009).
Using measured and modeled data, Smith et al. (2012) found
that for every I Mg ha™! of residue removed, 0.21 Mgha™! of
SOC was lost. Based on the data presented by Blanco-Canqui
and Lal (2009) and Smith et al. (2012), the rate of SOC loss
was about 0.31 Mg ha™! yr‘1 under <50% residue removal and
0.87 Mg ha™! yr‘1 under >50% residue removal rates. These
rates were the difference between no residue removal and residue
removal divided by the number of years under residue removal.

Crop residue removal reduced SOC through a number of
processes. First, crop residue removal reduces SOC directly
through removal of C with the aboveground biomass. Second,
high rates of crop residue removal increase water and wind ero-
sion potential, which can potentially increase SOC losses with
sediment (Kenney et al., 2015; Blanco-Canqui et al., 2016a;
Blanco-Canqui et al., 2016b). Third, residue removal degrades
soil structure and reduces soil aggregate size, which accelerates
SOC turnover (Six et al., 2000). Fourth, reductions in new
substrates for microbes due to residue removal result in microbes
using older or less energy efficient C sources for energy, resulting
in further loss of SOC (Stetson et al., 2012).

Losses of SOC stock or concentration following residue
removal can vary depending on a number of factors: duration of
residue removal, soil texture, climate, and others. For example,
at two sites in Canada, Malhi et al. (2011a) and Malhi et al.
(2011b) measured SOC stock change after 11, 19, and 28 yr
of residue removal and found that the extent of losses in SOC
stocks due to residue removal tended to increase with time at one
site and decrease at another site. Based on these studies, duration
under residue removal appears to have mixed effects on SOC
stocks. However, studies evaluating effects of duration of residue
removal on SOC are very limited to make definitive conclusions.

Soil textural class is another factor that could influence residue
removal effects on SOC concentration. Raffa et al. (2015) found
that residue removal was more detrimental to SOC concentra-
tion in coarse tropical soils, but in temperate environments, soil
texture was less important. Regarding climate effects, Raffa et
al. (2015) compared the effect of residue removal on SOC in
temperate and tropical regions and reported that residue removal
in tropical soils resulted in 6% greater losses of SOC than in
temperate soils.

Residue removal not only affects SOC concentration but also
other soil properties. For example, removal of residue at rates
above 50% reduces amount of water-stable aggregates (Blanco-
Canqui and Lal, 2009). The reduction in the amount of water-
stable aggregates can increase risks of water erosion. Similarly,
high rates of residue removal can increase wind erosion potential
by reducing dry aggregate size and stability (Osborne et al., 2014;
Blanco-Canqui et al., 2016b). The decline in soil aggregation
results in lower total porosity and water infiltration (Blanco-
Canqui and Lal, 2009). Residue removal can also reduce soil
fertility including soil N, P, and K concentrations. Finally, resi-
due removal can reduce soil biota, which adversely affects SOC,
nutrient cycling, and soil aggregation (Lehman et al., 2014).
Overall, crop residue removal, particularly at high rates, can be
detrimental to SOC concentrations as well as other soil properties.

COVER CROP EFFECTS ON SOIL PROPERTIES

Reviews on SOC and CC across different soil types, tillage
systems, and climates have reported that CC can significantly
increase SOC stocks from 0 to 3.50 Mg ha™! yr~! (Blanco-
Canqui et al., 2015; Poeplau and Don, 2015). This wide range
in SOC accumulation indicates that CC effects on SOC can
be highly variable. Based on Tables 1 and 2, the average rate of
SOC increase was 0.45 gkg‘l yr‘1 for SOC concentration and
0.49 Mg ha™! yr~! for SOC stocks in the upper 30 cm of the
soil. The difference in SOC gain between SOC concentration
and SOC stocks with CC was likely due to differences in soil
bulk density. Cover crops can increase SOC by adding biomass
C input, improving soil aggregation to protect SOC (McVay
etal., 1989; Villamil et al., 2006; Blanco-Canqui et al., 2015),
and decreasing water and wind erosion potential, which also
cause losses of SOC (De Baets et al., 2011; Blanco-Cangqui et
al., 2015).

Time after CC establishment, soil texture, CC species, tillage,
and climate can be some of the factors influencing CC effects
on SOC (Fig. 2). Cover crop effects on SOC are generally not
detected in the first few years after establishment; however, SOC
stocks can significantly increase (0.32 Mg ha™! yr~1) with time
(Blanco-Canqui et al., 2015; Poeplau and Don, 2015). Soil tex-
tures with greater clay content or those with low initial C con-
centration may increase in SOC more readily than sandy soils or
those with high initial C concentration (Blanco-Canqui et al,,
2015). Other categorical variables such as CC species (legume,
grass or non-legume, or mixes), tillage (no-till vs. tillage), and cli-
mate (tropical vs. temperate) appear to show no effects on SOC
(Poeplau and Don, 2015).

We expanded the dataset of Poeplau and Don (2015) to
explore the interactive effects of CC and tillage, precipitation,
temperature, CC species, and years under CC management
on SOC concentration and stocks from 30 studies to a total of
47 studies. Across all years, SOC concentration gain with CC
was not correlated with duration (» = 0.16; P > 0.05; z = 79).
However, the rate of SOC stock gain with CC was moderately
and linearly correlated with duration (r = 0.51; P < 0.001; 2 =
71; Fig. 3). This indicated that the longer a field is under CC,
the greater the SOC gain. The correlation between duration and
SOC stock gain under CC explained only about 21% of the vari-
ability in SOC stock gain under CC. This correlation between
SOC stock gain under CC with duration was similar to that
reported by Poeplau and Don (2015). Our findings indicate that
the potential of CC to increase SOC stocks increases with time
following establishment.

Within a tillage regime, there was significant variability in
SOC response to CC use. Mean annual SOC concentration gain
was 0.49 + 0.35 gkg™! yr~! for no-till, 0.11 + 0.09 gkg™! yr~!
for conventional till, and 0.47 £ 0.52 g kg‘1 yr‘1 for other till-
age practices (Table 1). These data indicate that tillage does not
affect SOC gain under CC. Mean annual SOC stock gain was
0.54 £ 0.17 for no-till, 0.29 + 0.05 Mg ha™! yr‘1 for chisel plow,
and 0.77 + 0.27 Mg ha~! yr~! for conventional ill (Table 2).
These data indicate that CC do not accumulate SOC stocks
at different rates under different tillage systems. No-till, chisel
plow, and conventional till were similar in rate of SOC stock

gain under CC.
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Reference
Amado et al., 2006
Amado et al., 2006

Balkcom et al.,

2013

SOC
gain
Mg ha~! yr!

0.58
0.21
—0.08
0.04
0.33
0.42
0.16
0.59
0.38

SOC

stocks

Mg ha™!
0.8

2

25.1
356
41.3

cm
0-20

yr

Duration Depth
I5

Cover
crop
No CC
Rye
Wheat
No CC
Rye
Wheat
No CC
Rye
Wheat
No CC
Ryegrass
Velvet bean
(Mucuna pruriens L.)
No CC
Pigeon pea (Cajanus cajan L.)

Crop
Corn—cotton
Corn
Corn—oat

Tillage
NT
till
NT
NT

Para till
Strip

Soil texture,
initial SOC
Sandy loam, 4.3 g kg™
Sandy loam, na
Sandy clay loam, na

MAP MAT
°C

18.4

19.4

19.7

1437
1440
1769

Location
Prattville, AL

Brazil
Brazil

9| Estimated from published graph.

Table 2 (continued).
T No fertilizer applied.
+ 168 kg N ha~! applied.
§ 202 kg N ha~! applied.

While there are some tendencies for CC groups to
affect SOC concentration differently, the high variability
among studies appears to limit differences among CC
groups. Among studies reporting significant CC effects
on SOC concentration, S were under brassicas, 13 under
grasses, 17 under legumes, and 3 under mixes (Table 1).
Mean annual SOC concentration gains were 0.81 +
0.75 gkg™! yr~! for brassicas, 0.50 + 0.38 gkg™! yr~! for
grasses, 0.36 + 0.32 gkg™! yr~! for legumes, and 0.61 +
0.20 gkg‘1 yr‘1 for mixes. These data indicate that CC
groups generally do not affect SOC concentration because
means and standard deviations were similar amongall
CC functional groups. Among studies reporting sig-
nificant CC effects on SOC stocks, 8 used brassicas,

12 used legumes, and 11 used mixes (Table 2). Mean
annual stock gains were 0.67 + 0.29 Mg ha! yr_1 for
grasses, 0.43 + 0.15 Mgha™! yr~! for legumes, and 0.42 +
0.28 Mg ha! yr‘1 for mixes, indicating no clear differ-
ences in trends in SOC stocks among CC species. Our
results corroborate those of Poeplau and Don (2015) who
compared the rates of SOC stock change between legumes
and non-legumes and found no differences. The lack of
differences in SOC stocks between mixes and single CC
species could be due to biomass yield. Some studies have
shown that biomass yield between mixes and single species
may not be significantly different (Smith et al., 2014).

Climate data as numerical mean annual temperature
and precipitation may show differences in SOC concen-
tration gains under CC. The annual gain rate of SOC
concentration (= 0.053; P > 0.05; » = 79) and annual
SOC stock (»=0.088; P > 0.05; » = 71) with CC was
not influenced by mean annual precipitation. Mean
annual temperature was not correlated with the annual
rate of SOC concentration gain (r = 0.16; P > 0.05;

n =79) or the rate of SOC stock gain under CC (r =
0.041; P> 0.05; 7 =71).

Cover crops can also improve soil physical properties,
but these properties are generally slow to change with
management. Soil aggregate stability may, however,
respond more rapidly than other physical properties over
relatively short time scales (<3 yr). The use of CC results
in positive effects on aggregate stability (Blanco-Canqui
etal,, 2015). Increased aggregation can increase total
porosity and water infiltration rate, and decrease soil
compaction parameters (bulk density and penetration
resistance). The positive effects on soil aggregation and
increase in total porosity can lead to increased water infil-
tration. Cover crops can increase uptake and cycling of
nutrients and reduce nutrient losses to the environment
(Blanco-Canqui et al., 2015). Cover crops can increase
microbial activity and alter the quantity and diversity
of the microbial community because they add substrate
diversity and increase quantity of substrates for microbial
activity (Jokela et al., 2009; Mbuthia et al., 2015).

N
o
~

Agronomy Journal Volume 109, Issue 5



USING COVER CROPS TO OFFSET 16.0
THE NEGATIVE EFFECTS OF RESIDUE | T b
REMOVAL ON SOIL CARBON
The Potential of Cover Crops to Offset
Effects on Soil Carbon
Based on the above discussion, a potential opportunity exists

to manage soil C with CCs (Fig. 4). Gains in SOC under CC
can potentially offset the negative impacts of residue removal on
SOC (Fig, 5). As indicated earlier, crop residue removal, par-
ticularly at high rates (250%) reduces SOC concentration and
stocks. For example, on an area basis, the average rate of SOC
stock loss due to residue removal across different rates of removal

-
g
=]
I
L ]

o
=]
|

Soil Organic C Stock Gain (Mg ha™!)
=) &
= =]

4.0 -
was 0.61 Mgha™! yr~!, whereas CC increase SOC stocks by an | e
average of 0.49 Mg ha™! yr~! (Table 2) in the upper 30 cm of 40
the soil. Therefore, on average, CC appears to have the potential "o ' 5 ' 10 ' 15 ' 20
to offset 80% (0.61 vs. 0.49 Mg ha=1yr~1) of the SOC stocks Duration under Cover Crop (yr)
%OSt due to residue rté_11110Vj111 -As dlscu'ssed carlier, SOC StOCkOIOSS Fig. 3. The correlation between rate of soil organic carbon stock
is about 0.31 Mgha™ yr—" under residue removal rates <50% gain and duration under cover crop.

(Blanco-Canqui and Lal, 2009; Smith et al., 2012), but SOC
gains under CC is about 0.49 Mg ha™! yr~! (Table 2).

Precipitation
vs Irrigation

Soil Texture

Temperature

Fig. 2. Factors affecting soil organic carbon (SOC) concentration or stocks after residue removal or cover crop addition. Factor colors
indicate general source affecting SOC where green is a plant factor, gray is soil and environmental factor, and blue is management factor.
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OPPORTUNITIES

e Early planting and late termination of cover
crops to increase biomass C input

e Controlled grazing or haying of cover crops
while harnessing the soil and crop benefits from
cover crops

e Planting cover crops after corn silage and
winter wheat harvest to control erosion and
maintain soil fertility

e Balancing the negative effects of crop residue
removal and positive of cover crops to maintain or
improve soil properties, soil productivity, and
environmental quality

CHALLENGES
e Insufficient cover crop growth
® Low performance in sandy soils

e Limited growth in water-limited regions
® Low response in highly fertile soils
e Potential reduction in primary crop yield

e Reduction in available water for next crops

Fig. 4. Opportunities and challenges for integrating cover crop after crop residue removal.

gES[DUE REMOVAL AT \

HIGH RATES

Increase:

e nutrient leaching and runoff
® erosion potential

Reduce:
® s0il organic C
® soil aggregation @ER CROPS FOLLOWING \
® s50il biological activity RESIDUE REMOVAL
@ soil fertility Improve:
® water infiltration ® ecosystem services
\ / ® 50il organic C storage

® sustainability

® 50il physical properties
+ & nutrient cycling

® s0il biological activity
o weed control

/ \ ® water management

COVER CROPS Reduce:

Improve: ® erosion potential
# s0il organic C stocks w&ient loss /
 soil physical properties

® s0il biological activity

® soil fertility

® water storage

Reduce:

® nutrient leaching and runoff

Cosion potential /

Fig. 5. Examples of the combined effect of cover crop following crop residue removal on soil properties, soil productivity, and
environmental quality.
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This indicates that CC has the potential to offset 100% of SOC
stock lost under low residue removal rates. Similarly, SOC stock
loss is 0.87 Mg ha™! yr~! under residue removal rates >50%
(Blanco-Canqui and Lal, 2009; Smith et al., 2012), indicat-

ing that CC could offset approximately 56% of the SOC stock
lost under the high residue removal rates. The former scenario

is expected as low rates of residue removal remove less C with
residues than high rates of removal.

Analysis by tillage systems based on the studies in the reviews
by Blanco-Canqui and Lal (2009) and Smith et al. (2012) sug-
gests the following. Under no-till systems, residue removal
resulted in SOC stock losses of 1.19 Mg ha™! yr~! on average but
CC increased SOC stocks by 0.59 Mgha™! yr~!, which means
CC in no-till systems can potentially offset about 50% of the
SOC stocks lost through residue removal. Under plowed systems
(moldboard plow, chisel, and others), the reviews above indi-
cated that residue removal reduced SOC stocks by an average of
0.19 Mgha! yr~1, but CC increased SOC stocks by an average
0f 0.53 Mg ha™! yr1, suggesting CC could offset all of SOC lost
with residue removal and tillage. However, there is high variabil-
ity in the quantity of SOC stocks lost with residue removal and
gained with CC under different tillage regimes. Because no-till
disturbs the soil the least, we expect CC to offset at least a portion
of the SOC stocks or concentration lost with residue removal.

Soil organic C stock losses were often greater than 2 Mg ha!
during the first decade of residue removal, and continued to
increase with time (Fig. 6) (Blanco-Canqui and Lal, 2009; Smith
et al., 2012). However, CC appeared to result in SOC stock gains
that were not >2 Mg ha™! until about 7 yr (Fig, 3). This suggests
that CC could offset up to 50% of the SOC lost under residue
removal during the first decade, but afterward CC may only offset
afraction of the residue removal induced SOC losses. This suggests
that CC following residue-removal may have the greatest impact
after the first decade of residue removal.

On a cropping system basis, corn systems lost SOC ata
rate of 1.36 Mg ha™! yr™! under residue removal (Blanco-
Cangqui and Lal, 2009; Smith et al., 2012). Cover crops in
similar cropping systems gained SOC stocks at a rate of
0.49 Mgha™! yr~!, suggesting that CC can offset about 36% of
the SOC stocks lost under residue removal in corn or similar

10 y=0.30x-4.15
1r=0.60;p< 0.0(101
~ 51
P
-
oo
=
= 04
8
-
2 s
£ 5
g |
=} j
3
“ 10 A L]
L)
-15 T r r T T T
0 5 10 15 20 25 30 35

Duration under Residue Removal (yr)

Fig. 6. Change in soil organic carbon (SOC) stock with duration
under residue removal (from reviews by Blanco-Canqui and Lal
2009; Smith et al., 2012).

systems. Other cropping systems lost SOC stocks at a rate

0f 0.19 Mg ha™! yr~1, but CC cereal or low biomass systems
gained SOC at a rate of 0.49 Mg ha™! yr~!. These data suggest
that cereal or low biomass cropping systems, CC could offset
all of the SOC stocks or concentration lost.

One factor that may affect the quantity of SOC stocks or con-
centration lost under residue removal, gained under CC and the
net SOC balance between both factors is the quantity of biomass
input. Different cropping systems produce different quantities of
biomass depending on fertilization, climate, soil type, and other
factors. For example, corn systems can produce residue quantities
ranging from 2 to 12 Mgha™! (Blanco-Canqui and Lal, 2009;
Lou et al., 2011; Schmer et al., 2014). The amount of biomass
produced from small grain systems ranged from 1.5 to 7 Mg ha™!
(Thomsen and Christensen, 2004; Malhi and Lemke, 2007;
Lafond et al., 2009). Cover crop biomass yicld may range from
0.56 t0 5.03 Mg ha™! for grasses (Kuo et al., 1997; Kaspar et al.,
2006; Sainju et al., 2007) and from 3.3 to 9.8 Mgha™! for legumes
(Hubbard et al., 2013). While the range in residue amount pro-
duced from cropping systems compared to CC may be similar,
there can be differences on a site basis. The differences within a site
may lead to imbalances in biomass, leading to reductions in SOC
if CC produces less biomass than cropping systems. As an example
of how similar CC and residues may be in terms of biomass yield,
Balota ct al. (2014) reported that biomass yield from CCs to range
from 2.98 to 4.34 Mg ha™! and the primary crop residues of corn
to range from 3.73 to 4.30 Mg ha™L. In this instance, the removal
of residues and use of CC may result in no net loss of SOC.

Studies on Cover Crops following
Residue Removal

Based on our linking of the data from reviews on residue
removal and CC separately (Tables 1 and 2), CC can have the
ability to offset residue removal losses to SOC in some systems.
To test this hypothesis, we conducted a review of available pub-
lished studies that investigated the effects of CC on SOC after
residue removal. We found four studies that examined the use
of CC and residue removal on SOC stocks (Table 3).

The first study conducted in south central Nebraska for 3 yr
found that residue removal at 63% reduced SOC concentration
but rye CC had no effect (Blanco-Canqui et al., 2014). One con-
clusion from this study was that rye CC had limited or no effect
on offsetting the SOC lost with corn residue removal in the short
term (3 yr). The second study conducted in eastern South Dakota
for 4 yr on assilty clay loam found no effect of lentil-wheatgrass
CC and corn residue removal (37, 55, and 98%) on SOC stocks
in a corn-soybean rotation where lentil CC followed soybean
and wheatgrass CC followed corn (Stetson et al., 2012).

The third study was conducted in a silt loam in Pennsylvania,
which examined the interactive effects of CC and corn residue
removal at rates of 0, 50, and 100% for 5 yr (Adler et al., 2015).
The researchers did not observe a change in SOC stocks due
to corn residue removal or addition of rye CC (Table 3). The
authors suggested that belowground biomass under corn may
have been sufficient to balance any SOC loss from the removal
of aboveground biomass. The site used in the study by Adler
et al. (2015) received dairy cattle manure for 15 yr prior to the
study. The addition of manure may have reduced any negative
effects of residue removal on SOC stocks. The fourth study was

14 Agronomy Journal <+ Volume 109, Issue 5 <+ 2017



"D PUE ANPISaJ U2IMIDQ UOIIDBISIUI OU—(}]07) ‘|B 32 Inbue-odue|g §
‘PRAOWIAL WD G| dAOQE SsewoOIq |8 ‘YSIy—|eAOW %86 S3|els 9|eq pue doyd ‘uresd ‘wnipaw—[eAowad %66 ‘AJuo uread ‘moj—eaowad % /¢ (S107) ‘B 32 J19uSapA pue (7]07) ‘|e 39 uosiaig
‘ydeu8 paysijqnd ay3 wouy pajewnsa sanjea HOS ‘A|UO DD MOYs 10U PIp Pue D7) ssodde HOS pasedare (§[07) |32 J3|pY |

B0'6C |eAowal mmm.‘_wumwc>>
06T 9Nnplisad ssoddy 2D ON ui0)
BO'LT [eAowa [RUER
®0'LT 9Npisad ssOdy DD ON c.mmn_xOm
90'9C 86
®0'0€ 99
BOIE LE DD ssoy uiop
90°SC 86
BELT )
G107 “|e 30 JOUSOAA  BE'ST 1'6T 9 L€ DD ssoay ueaqghog weo| AepP AYIS  |1'9 00§ FeioveQ Yyanog Xauno?) sdupjooug
B46E [eAOWR SSOIDY 9y
BE'8E [eAOWR $SOIDY DD oN
96'8€ €9 DD ssoy
¥10T “|e 19 Inbuen-oouelg  ee 0 'U € [eAOWRI ON DD sso.dy uJo> weo| IS ol 11L §3N usaus) AeD
— B8
®0'8I 86
egLI 99
e6'8l LE
(7 wnuupb>
uoiAdosdy)
sseJ31eaym
—{uen
'8l 86
eE6l 9S
TI0T eI UoSIxIS  BG/| 6Ll 14 LE DD ©°N ueaghos-uio)  weo| Kep LIS |9 00 feioeq yanos “fauno) s3unjooug
BQCI Lyl 001
BQTI (O] 0s
BOEl Syl 0 ueaglos—uaod
BQCI L€l 001
BGEl (4| 0s
SI0T“[e3 J9IpY  BST| Syl S 0 ahky uio weo| 3|i§ 1’01 £0Ol 1vd ‘@3ajj0D neag
—|-BY S— A % D, wuw
QuaIRPyY  DOS 208 uon 91eJ [RAOWA dou> dou> aumxa) IV dVIW uonedoT
Jeulq ey -einQg anpisay J9A0D Jlog

“3uJ1p Apuesyiudis Jou ade uoiIed0| Apnis awes ay3
UIY3IM I3133] 9SEDISMO| SWES 33 AQ PIMO||O} SUBD|. "9|qE[IEA. JOU = BU ‘Dinjesadwa) [enuue uedly = || ‘Uoieadidaud [enuue uesly = dy/|a "Y3dsp wd-g 03 SuoiIelo. UuJod [|3-0u J4apun D7) jJo
uoljBJINp pUE ‘sa123ds D) ‘S2IBU [BAOWSI SNPISAJ ‘S24NIXI) |IOS ‘SSIBWI[D Ul SHD0IS 4O UOIIEBIIUIIUOD (DOS) UOGIED DIUBSIO [I0S JO 938U UO SII3)9 [BAOWSJ SNPISAJ U3y (D)) doud usA0D) '€ 9|qe

I5

2017

e Volume 109, Issue 5

Agronomy Journal



a continuation of the 4-yr study by Stetson et al. (2012) and
reported reults after 6 yr (Wegner et al., 2015). Residue removal
at 98% reduced SOC concentration but CC had no effect.

The above four studies suggest that CC may not increase
SOC concentration in the short term. Cover crops may offset
SOC lost with corn residue removal in the longer term (>Sy1),
but in the short term, their potential for accumulating SOC
appears to be limited. While CC did not significantly increase
SOC in the above four studies, CC tended to increase SOC
concentration or stocks in two of the four studies (Stetson et
al., 2012; Blanco-Canqui et al., 2014). These trends suggest
that CC may ameliorate SOC lost from residue removal in the
long term. Differences in initial SOC concentration and soil
texture may affect the extent to which CC affect SOC gains.
Cover crops may not increase SOC concentration in soils with
high initial SOC concentration compared to soils with low
initial SOC concentration (Stewart et al., 2009). Similarly,
soils high in silt and clay content can be more resilient to man-
agement changes due to the presence of organo-mineral asso-
ciations relative to coarse-textured soils. The data from the four
studies that incorporated CC after residue removal indicated
that CC may not offset residue removal-induced SOC losses.
Alternative methods to managing CC may result in CC offset-
ting residue removal-induced SOC losses.

COVER CROPS TO OFFSET NEGATIVE
EFFECTS OF RESIDUE REMOVAL
ON OTHER SOIL PROPERTIES

As discussed eatlier, CC can in general improve soil proper-
ties whereas excessive rates of residue removal can reduce such
properties. Thus, addition of CC following residue removal
should help offset negative impacts of residue removal. Studies
on the effects of CC following residue removal on all properties
are, however, few. We discuss the findings from the few available
studies next.

Wet Aggregate Stability: An Indicator
of Water Erosion Potential

There are no studies on water erosion under CC following
crop residue removal, but three studies have measured wet
aggregate stability under CC after residue removal. Wet aggre-
gate stability is a key indicator of soil water erosion potential.
Larger soil aggregates are less likely to be carried in runoff than
small aggregates (microaggregates). The first study conducted
in assilty clay loam in eastern South Dakota for 4 yr found that
CC did not affect wet aggregate stability, but residue removal
at 98% decreased wet aggregate stability by 8% compared to
residue removal at 37% (Stetson et al., 2012). Wegner ct al.
(2015) continued the previous study in South Dakota for an
additional 2 yr and found that high rates of residue removal
reduced water stable aggregates from 44.2% (98% residue
removal) to 37.6% (37% residue removal). Similar to the previ-
ous study, CC did not affect wet aggregate stability after 6 yr.
These data indicate that CC may not rapidly improve soil’s
resistance against water erosion after residue removal.

While the percentage of water stable aggregates increases
with CC, so does the overall size of water stable aggregates.
Blanco-Canqui et al. (2014) found in a 3-yr scudy in a south
central Nebraska silt loam that residue removal of 63%

decreased the mean weight diameter of water-stable aggregates
(index of aggregate stability) from 1.47 to 1.05 mm, while CC
increased the mean weight diameter from 1.03 to 1.49 mm in
the same study. This indicated that CC can offset the negative
effects of residue removal on wet soil aggregate stability

Together the above studies on wet aggregate stability (Stetson
etal,, 2012; Blanco-Canqui et al., 2014; Wegner et al., 2015)
suggest that CC may or may not offset negative effects of residue
removal with regard to wet aggregate stability. Cover crop abil-
ity to offset negative effects of residue removal may be dictated
by soil texture where fine particles can produce organo-mineral
associations and strong macro-aggregates. For example, the lack
of CC offsetting residue removal effects on aggregate stability in
the study in eastern South Dakota (Stetson et al., 2012; Wegner
etal., 2015) may be due to the presence of finer textured soil
than in south central Nebraska (Blanco-Canqui et al., 2014).
Field data on measured water erosion under CC are needed to
evaluate the extent to which CC can reduce water erosion after
residue removal. Kaspar et al. (2001) found that CC combined
with crop residue can reduce water erosion by up to 93%. This
indicated that CC with at least some residue cover can reduce
water erosion.

Dry Aggregate Stability: An Indicator
of Wind Erosion Potential

Similar to water erosion, there are no studies on actual
wind erosion measurements under CC after residue removal.
However, there are two studies, which have measured dry
aggregate stability under this management regime. This soil
property is a sensitive indicator of wind erosion potential. The
first study showed that CC tended to decrease the wind erod-
ible fraction from 21 to 14% and tended to increase the size
of dry aggregates from 18.9 to 44.4 mm compared to plots
without CC on assilt loam in south central Nebraska after
3 yr (Blanco-Canqui et al., 2014). The same study found that
residue removal at 63% increased the wind erodible fraction
from 4.7 to 30.4% and reduced dry aggregate size from 57.0
to 4.1 mm compared to no residue removal. This study indi-
cated that CC may ameliorate the negative impacts of residue
removal on dry aggregate size and thus wind erosion potential.

The second study found that CC decreased the wind erod-
ible fraction when corn residue was removed at high rates in
castern South Dakota (Osborne et al., 2014). In the same study,
the wind erodible fraction was similar with and without CC
under low residue removal. The results from the above two
studies indicate that CC can, in general, reduce the wind erod-
ible fraction and thus offset wind erosion potential after corn
residue removal. The potential of CC for offsetting residue
removal effects is likely affected by duration of CC use, amount
of corn residue produced, and soil texture, among others. For
example, the site in eastern South Dakota was rainfed under
no-till corn—soybean rotation, whereas the site in a south cen-
tral Nebraska was irrigated under no-till continuous corn. It is
also important to discuss that CC reduced wind erodible frac-
tion in the South Dakota site but not in the Nebraska site. This
may be due, in part, to the length of CC management. The CC
in the South Dakota site was grown for 6 yr and only for 3 yr in
the Nebraska site.
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Cover crops may also increase microbial activity. In eastern
South Dakota, Wegner et al. (2015) used the fluorescein diace-
tate method (FDA) to determine microbial activity in soils
from plots with and without residue removal and CC. They
found that 98% residue removal decreased microbial activity in
soybean by about 10 mg FDA min~! kg™! dry soil compared to
low residue removal, but residue removal did not affect micro-
bial activity in corn. Cover crops increased microbial activity in
corn after 6 yr from 32.7 to 35.8 mg FDA min~! kg_l dry soil,
but CC did not affect microbial activity in soybean.

Particulate organic matter (POM) is a substrate for soil
microbial activity and can be affected by CC following resi-
due removal. Osborne et al. (2014) found that CC follow-
ing residue removal at rates more than 55% decreased POM
concentration, but CC only increased POM concentration in
low rates of residue removal (37%) in a site in eastern South
Dakota (Osborne et al., 2014). In another study in south cen-
tral Nebraska, CC did not affect coarse or fine POM. However,
residue removal reduced fine POM and coarse POM (Blanco-
Canqui et al., 2014). The data on POM and soil microbial
activity from the above studies suggest that residue removal can
rapidly affect POM concentrations, but CC following residue
removal may or may not have rapid effects.

OPPORTUNITIES AND CHALLENGES
FOR USING COVER CROPS
FOLLOWING RESIDUE REMOVAL

Since SOC results from plant biomass, any CC management
method that increases CC biomass could result in increased
SOC. One method of CC management could be planting CC
early, such as after corn silage or wheat or into standing crops
just before it reaches maturity. For example, when leguminous
CC followed wheat in Kansas, biomass levels were 7 Mg ha!
for sunn hemp and 5.3 Mg ha! for late maturing soybean
(Blanco-Canqui et al., 2011). Cover crop in corn yielded silage
systems in Minnesota and Canada had cover crop that was 0.7
to 6.4 Mg ha™! (Krueger etal., 2011; Tollenaar et al., 2011).

Another method of management is terminating CC late, such
as a week or within a few days of primary crop planting. Several
studies have shown that CC biomass at termination 10 d to 1 mo
before planting corn was more than double or triple that of the
CC terminated 2 mo before planting corn (Clark et al., 1994;
Wagger, 1989; Westgate ct al., 2005; Crandall et al., 2005).
Presumably, the longer growing period, which resulted in greater
CC biomass would result in greater positive effects on soil prop-
erties. These studies suggest that early planting and late termi-
nation of CC can result in increased CC biomass, which may
concomitantly increase SOC levels although experimental data
on SOC gains under later termination of CC are not available.
Terminating CC late or planting into standing crops has, how-
ever, its own challenges. For example, late termination of CC
could negatively impact crop yields through plant competition
for water and nutrients, especially in semiarid locations, reducing
subsequent crop yields.

Use of CC following crop residue removal is not without its
challenges (Fig. 5). Cover crop performance and benefits may
depend on biomass input, duration, soil texture, initial SOC
concentration, and climate. Cover crops must achieve sufficient

biomass in a short timeframe to improve soil properties. Cover
crop biomass production is highly variable (Clark et al., 1994;
Johnson et al., 1998; Kaspar et al., 2001; Krueger et al., 2011;
Tollenaar et al., 2011; Nielsen et al., 2015a). For example, CC
terminated when small (or early) potentially does not produce
sufficient biomass or root systems to increase SOC or improve
other properties. However, when CC is grown for longer peri-
ods, such as interseeding into the primary crop before maturity,
after silage or wheat, or terminating closer to primary crop
planting, CC can positively impact soil properties.

Changes in soil properties after CC can be difficult to detect
in the short term. Tables 1 and 2 show that 50% of studies using
CC for <5 yr showed no effect of CC. This suggests that CC can
have variable effects on ameliorating any adverse effects of resi-
due removal on soil properties in the short term. Differences in
soil texture could also affect CC impacts on soil properties. For
example, soils with greater silt or clay content compared to soils
with greater sand content may accumulate more SOC as SOC
interacts with fine soil particles (Hassink, 1997; Six et al., 2002).

Initial soil C concentration or stock before implementing
CC use may impact soil property response to CC. We hypoth-
esized that soils with lower initial SOC concentration could
accumulate SOC more rapidly than soils with high initial SOC
stocks following CC establishment. The initial SOC stocks for
the published studies ranged from 4 to 80 Mg ha™! (Table 2).
The rate of annual SOC stock gain with CC was positively
correlated with initial SOC stocks (Fig. 7), which suggests that
soils with high initial SOC stock could gain more SOC after
CC addition. This relationship does not support the hypothesis
that soils low in initial SOC can gain SOC concentration at a
greater rate. It is important to note, however, that few studies
on CC were conducted in soils with low initial SOC. More
studies on CC on low organic matter soils are needed to better
assess the relationship.

Differences in climate may affect how CC affects soil proper-
ties. For example, temperature, as discussed earlier, can impact
the amount of SOC gained under CC due to increased biomass
production with decreasing temperature (Fig. 4). Regarding
precipitation input, it is well known that regions with high pre-
cipitation accumulate more SOC compared to those with low
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Fig. 7. Correlation between soil organic carbon (SOC) stock gain
and initial SOC stock under cover crops.

Agronomy Journal <+ Volume 109, Issue 5 <+ 2017

17



precipitation due to greater plant biomass production (Trost et
al., 2013). However, in this review, mean annual precipitation
and the amount of SOC gained under CC were not correlated,
suggesting that CC effects on SOC and soil properties do not
appear to change with precipitation zone.

Another challenge with CC use, particularly in semiarid
locations, is the potential negative impact on primary crop yield
(Nielsen and Vigil, 2005; Nielsen et al., 2015b). Fallow periods are
used to store soil water for subsequent crops in semiarid regions,
but growing CC during this period can use water intended for
the primary crop (Nielsen and Vigil, 2005; Nielsen et al., 2015b).
An analysis of a few studies from different precipitation zones
suggests that CC can decrease primary crop yield as precipitation
decreases. For example, a study in Maryland (1034-1202 mm
annual precipitation) showed that CC did not negatively impact
corn yield (Clark et al., 1994). In a study in Iowa (910 mm annual
precipitation), use of CC had mixed effects on corn yield (Johnson
etal., 1998). Similarly, in Nebraska (711 mm annual precipita-
tion), CC reduced yield in corn silage in 5 out of 10 yr (Ferguson
etal., 2005). In Colorado (421 mm annual precipitation), CC
reduced wheat yield during a 6-yr study (Niclsen and Vigil, 2005).
The negative effect of CC on yield in Colorado compared with
Maryland is most probably due to the 2.6 times (1118 vs. 421 mm)
lower precipitation in the semiarid environment.

RESEARCH NEEDS

There are a number of research needs that deserve attention:

1. There is a potential opportunity to combine CC with resi-
due removal to maintain or enhance soil properties and produc-
tivity (Fig. 4 and 5). However, research data on this topic are very
limited. We found only four studies that evaluated CC effects on
SOC and other soil properties after residue removal. Potential of
CC for offsetting negative effects of removal most likely depends
on site-specific conditions. Therefore, more research on the effect
of CC after residue removal on SOC stocks, crop yield, and other
soil properties is needed from a wide variety of CC management
(i.e., planting and termination dates) scenarios, tillage and crop-
ping systems, soil types with different initial C concentrations,
and climatic conditions.

2. Cover crop research on mixtures vs. single CC species is
limited. The hypothesis is that mixtures may increase SOC
stocks and soil properties more than single species. However,
there are few data to support that hypothesis at this point. If
mixtures increase SOC and soil properties more than single spe-
cies, then planting mixtures after crop residue removal may have
a greater ability to offset the negative effects of residue removal
than single species alone.

3. More CC studies in water-limited or semiarid regions are
needed. Use of CC in semiarid regions is not very common, but
there is a renewed interest in growing CC in those environments.
For example, data from irrigated sites on residue removal, CC,
and CC after residue removal are very few. Do irrigated croplands
lose more SOC with residue removal compared with rainfed
croplands? Does CC offset residue removal effects on SOC more
rapidly in irrigated than in rainfed croplands? How might CC
and crop residue management need to change with irrigation?
Different management strategies and CC species may be required
to successfully grow CC in water-limited regions.

4. There is also a need to investigate how CC performance
changes with temperature, evapotranspiration, short-growing
season, and other growth factors. Precipitation is not the only
factor that affects CC growth but rather the combination of all
the factors.

5. Data from long-term studies on residue removal, CC, and
CC following residue removal are limited. Yet, this information is
needed to better to understand how these practices may affect soil
properties in the long term. For example, it is important to deter-
mine whether or not CC increases SOC stocks indefinitely or
whether or not SOC stock reaches effective stabilization capacity
(Stewart et al., 2007).

6. Is there a threshold level of residue removal where CC could
offset the negative effects of residue removal? If; so what is that
level, and in what conditions is it feasible? Understanding this
balance and the conditions where the balance occurs warrants
more research. Finding the balance between the negative effects of
residue removal and the positive effects of CC on soil properties is
a priority.

7.Some CC and residue removal studies reported SOC concen-
tration on a mass basis (% or gkg™!) only. This makes comparison
of SOC gains or losses on an area basis (Mg ha™!) difficult. Soil
bulk density should be included in all measurements for a compre-
hensive analysis of SOC stocks following CC addition and crop

residue removal.

CONCLUSION

Removing crop residues at high rates (250%) can reduce SOC
concentration and stocks. By contrast, CC can increase SOC
concentration and stocks, potentially offsetting residue removal-
induced losses to SOC and other soil properties. However, our
review found few studies that specifically evaluated CC following
residue removal. The few studies indicated that CC following
residue removal may or may not offset SOC losses and improve
other soil properties in the short term (<6 yr). The limited benefits
of CC for increasing SOC could be due to the termination time.
Cover crops were commonly terminated early in most previous
studies, which did not allow significant biomass accumulation and
C input. Some potential opportunities to improve performance
of CC after residue removal can include early planting (i.e., inter-
seeding) and late termination of CC. Some challenges that could
exist with the combination of CC and residue removal include
insufficient CC biomass and reduction in main crop yields in
waterlimited regions. Additional information on CC effects after
residue removal on SOC and other soil properties from a broader
range of soil textures, CC mixtures vs. single species, management
strategies, and climatic conditions is needed. Overall, CC, in the
short term, appears to have limited effects on offsetting residue
removal effects on soil properties.
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